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Abstract. In this paper, we introduce the concept of the valley at 0 augmenting function and apply
it to construct a class of valley at 0 augmented Lagrangian functions. We establish the existence
of a path of optimal solutions generated by valley at 0 augmented Lagrangian problems and its
convergence toward the optimal set of the original problem and obtain the zero duality gap property
between the primal problem and the valley at 0 augmented Lagrangian dual problem. Moreover,
we establish the exact penalization representation results in the framework of valley at 0 augmented
Lagrangian.
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1. Introduction

Let R̄=R∪�+��−�� and �� Rn→ R̄ be an extended real-valued function.
Consider the primal problem

inf
x∈Rn

�	x
� (1)

In the Lagrangian dual approach, appropriate augmenting functions are in demand
in defining dual problems for (1) such that the zero duality gap holds. In [8] a con-
vex augmenting function was introduced and the corresponding zero duality prop-
erty was obtained. A level-bounded augmenting function was given in [3] where
the convexity of augmenting functions in [8] is replaced by a level-boundedness
condition. Furthermore, a peak at 0 augmenting function was introduced in [9]
and applied to establish an equivalence of the zero duality gap properties of a
corresponding augmented Lagrangian dual problem and a Lagrangian-type dual
problem [10]. It is clear that a level-bounded augmenting function is valley at 0,
but not vice versa. It is still unknown whether the valley at 0 function guarantees
a zero duality gap. This paper gives a positive answer to this question.
The existence and convergence of an optimal path generated by penalty/dual

problems toward the optimal set is important for numerical solution methods,
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see [1, 3, 12]. In this paper, we introduce the concept of valley at 0 augmenting
functions and apply it to construct a class of valley at 0 augmented Lagrangian.
We establish the existence of a path of optimal solutions generated by valley at 0
augmented Lagrangian problems and its convergence toward the optimal set. A
corresponding zero duality gap between the primal problem and the augmented
Lagrangian dual problem is obtained. We also establish the exact penalization
representation results in the framework of new augmented Lagrangian under
weaker conditions than the ones in [3]. It is worth noting that, as the valley
property is a much weaker condition than the level boundeness, the techniques
used in this paper are different from the ones in [3].
The outline of this paper is as follows. In Section 2, we introduce the concepts

of a valley at 0 augmenting function and a corresponding augmented Lagrangian.
In Section 3, we establish the existence of a path of optimal solutions generated
by augmented Lagrangian problems and its convergence to the optimal set for the
primal problem. In Section 4, we obtain necessary and sufficient conditions for
an exact penalty representation in the framework of new augmented Lagrangians.

2. Augmented Lagrangians

A function f̄ � Rn×Rm→ R̄ is said to be a dualizing parameterization function
for � if �	x
= f̄ 	x�0
�∀x∈Rn.

DEFINITION 2.1 [8]. (i) Let X⊂Rn be a closed subset and f � X→ R̄ be an
extended real-valued function. The function f is said to be level-bounded on X if,
for any �∈R, the set �x∈X� f 	x
��� is bounded. (ii) A function f̄ � Rn×Rm→ R̄
with value f̄ 	x�u
 is said to be level-bounded x locally uniform in u if, for each
ū∈Rm and �∈R, there exists a neighborhood U	ū
 of ū along with a bounded
set D⊂Rn, such that �x∈Rn� f̄ 	x�u
���⊂D for any u∈U	ū
.

DEFINITION 2.2. The function f � X→ R̄ is said to have a valley at 0 in X if,
f 	0
=0, f 	x
>0, for all x =0, and c�= inf�x���f 	x
>0, for each �>0.

It is clear that a continuous function f has a valley at 0 if and only if –f has a
peak at 0, see [9].

DEFINITION 2.3. (i) A function �� Rm→R+∪�+�� is said to be a generalized
augmenting function if it is proper, lower semicontinuous (lsc, for short), level-
bounded on Rm� argminy �	y
=�0� and �	0
=0. (ii) A function �� Rm→
R+∪�+�� is said to be a valley at 0 augmenting function if it is proper, lower
semicontinuous, has a valley at 0 in Rm.

Remark 2.1. It is easy to see if � is a generalized augmenting function, then
it is a valley at 0 augmenting function. In fact, if � hasn’t valley at 0 in Rm,
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then there exists �>0 such that c�= inf�x����	x
=0, hence there exists �xj�⊆
Rm��xj��� such that �	xj
→c�. If �xj� is unbounded, by the definition of level-
bounded function, we get ��	xj
� is unbounded. Thus there exists a subsequence
of ��	xj
� converging to infinite. This contradicts to c�=0. So �xj� is bounded,
there exists x0, such that xj→x0. The lsc of � and argminy�	y
=�0� imply
�	x0
=0, hence x0=0, but �x0���, which implies a contradiction.

If � is a valley at 0 augmenting function, then it may be isn’t a generalized
augmenting function. For example, let u=	u1�����um
∈Rm and 0<�<1,

�	u
=
{
�u��p� if �u�p�1
1� if �u�p>1

�

where

�u�p=
{(∑m

j=1 �uj �p
)1/p

� if 1�p<+�
max��u1�������um��� if p=+� �

It is easy to check � is a valley at 0 augmenting function, but it is not generalized
augmenting function.

DEFINITION 2.4. Consider the primal problem (1). Let f̄ be any dualizing
parameterization function for �, and � be a valley at 0 augmenting function.

(i) The valley at 0 augmented Lagrangian 	with parameter r >0
 l̄� Rn×Rm×
	0�+�
→ R̄ is defined by

l̄	x�y�r
= inf�f̄ 	x�u
−�y�u�+r�	u
� u∈Rm��

x∈Rn� y∈Rm� r >0�

where �y�u� denotes the inner product.
(ii) The valley at 0 augmented Lagrangian dual function is defined by

�̄	y�r
= inf�l̄	x�y�r
� x∈Rn�� y∈Rm� r >0� (2)

(iii) The valley at 0 augmented Lagrangian dual problem is defined as

sup
	y�r
∈Rm×	0�+�


�̄	y�r
� (3)

Now we discuss the property of the valley at 0 augmented Lagrangian for the
primal problem (1).
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Define the perturbation function by

p	u
= inf�f̄ 	x�u
� x∈Rn��

Then p	0
 is just the optimal value of the problem (1).

The following proposition summarizes some basic properties of the valley at 0
augmented Lagrangian, which will be useful in the sequel. Its proof is elementary
and omitted.

PROPOSITION 2.1. For any dualizing parameterization and any valley at 0
augmenting function, we have

(i) the valley at 0 Lagrangian l̄	x�y�r
 is concave, upper semicontinuous in
	y�r
 and nondecreasing in r .

(ii) weak duality holds:

�̄	y�r
�p	0
� ∀	y�r
∈Rm×	0�+�
� (4)

3. Optimal Paths and Zero Duality Gaps

In this section, we establish the existence of a path of optimal solutions generated
by valley at 0 augmented Lagrangian problems and its convergence to the optimal
solution set of the primal problem (see Theorem 3.1). Using Theorem 3.1, we
get a zero duality gap property between the primal problem (1) and its valley at
0 augmented Lagrangian dual problem (3) (see Theorem 3.2).
Consider the primal problem (1) and its valley at 0 augmented Lagrangian

problem:

P	y�r
 inf
	x�u
∈Rn×Rm

�f̄ 	x�u
+r�	u
−�y�u���

Note that P	y�r
 is the same as the problem of evaluating the valley at 0
augmented Lagrangian dual function �̄	y�r
. Let S and V 	y�r
 denote the optimal
solution sets of the problems (1) and P	y�r
, respectively. Recall that p	0
 and
�̄	y�r
 are the optimal values of the problems (1) and P	y�r
, respectively.
We have the following general results concerning the existence of an optimal

path.
If the dualizing function f̄ 	x�u
 is lsc, and level-bounded in x, we see that

� is proper, lsc and level-bounded. It follows that S is nonempty and compact,
see [3].

THEOREM 3.1 (Optimal path). Consider the primal problem 	1
 and its valley
at 0 augmented Lagrangian problem P	y�r
. Assume that � is proper, and that
its dualizing parameterization function f̄ 	x�u
 is proper, lsc, and level-bounded



SOME RESULTS ABOUT DUALITY AND EXACT PENALIZATION 501

in x locally uniform in u. Suppose that there exists 	ȳ�r̄
∈Rm×	0�+�
 such
that

m̄= inf�l̄	x�ȳ�r̄
� x∈Rn�>−�� (5)

Then

(i) There exists r0>r̄ , such that for any r�r0�V 	ȳ�r
 is nonempty and compact.
(ii) For each selection 	x	r
�u	r

∈V 	ȳ�r
 with r�r0, the optimal path

�	x	r
�u	r

� is bounded and its limit points take the form 	x∗�0
, where
x∗ ∈S.

Proof. (i) Let mr= inf�l̄	x�ȳ�r
�x∈Rn�. From (5), we have mr�m̄ for all
r >r̄ . By the definition of mr , there exists 	xj�uj
∈Rn×Rm, satisfying

f̄ 	xj�uj
+r�	uj
−�ȳ�uj�→mr� (6)

Hence, for some #0�0, there exists an integer N >0, such that

f̄ 	xj�uj
+r�	uj
−�ȳ�uj��mr+#0� ∀j >N � (7)

It is clear that mr�p	0
. Since � has a valley at 0, c�= inf�x����	x
>0, for
each �>0. Denote r1= p	0
+#0−m̄

c�
+ r̄ , we will prove that V 	ȳ�r
 is nonempty for

each r >r1. From (5) and (7), we have

�	uj
�
p	0
+#0−m̄

r− r̄ <c�� ∀j >N

This implies that uj ∈�u∈Rm� �u����� ∀j >N . Let �1=max��u1���u2������
�uN��. Again from (7), we have

f̄ 	xj�uj
�p	0
+#0+�ȳ�	�+�1
� ∀j� (8)

Because f̄ 	x�u
 is level-bounded in x locally uniform in u, it follows from (8) that
�xj� is bounded, so �	xj�uj
� is bounded. We may assume that 	xj�uj
→	x0�u0
.
The lsc of f and � , together with (6), implies

f̄ 	x0�u0
+r�	u0
−�ȳ�u0�� lim inf
j→+�

f̄ 	xj�uj
+r lim inf
j→+�

�	uj
− lim
j→+�

�ȳ�uj�
� lim

j→+�
	f̄ 	xj�uj
+r�	uj
−�ȳ�uj�
=mr� (9)

Hence

f̄ 	x0�u0
+r�	u0
−�ȳ�u0�=mr�
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That is V 	ȳ�r
 =% for each r >r1. The lsc of f and � implies that V 	ȳ�r
 is
closed.
Let x̄∈Rn such that −�<�	x̄
<+�. Let
O	r
=�	x�u
∈Rn×Rm� f̄ 	x�u
+r�	u
−�ȳ�u���	x̄
��

Denote r0=max�r1� �	x̂
−m̄c�
+ r̄�, we prove that O	r
 is a bounded set for each

r >r0. Suppose to the contrary that ∃	xj�uj
∈O	r
 such that �	xj�uj
�→+�.
Since 	xj�uj
∈O	r
, we have

f̄ 	xj�uj
+r�	uj
−�ȳ�uj���	x̄
� (10)

This, combined with (5), yields

�	uj
�
�	x̄
−m̄
r− r̄ <c��

Then uj ∈�u∈Rm��u����. From (10), we have

f̄ 	xj�uj
��	x̄
+�ȳ���
Hence, it follows from the level-boundedness in x locally uniformness in u of
f̄ 	x�u
 that �xj� is bounded, so �	xj�uj
� is bounded, a contradiction arising.
Thus, O	r
 is bounded. Since O	r
 is closed, so O	r
 is compact for r�r0. This
implies the solution set V 	ȳ�r
⊂O	r
 is nonempty and compact for any r�r0.
(ii) Let 	x	r
�u	r

∈V 	ȳ�r
 with r�r0, we have 	x	r
�u	r

∈O	r
⊂O	r0
.

Hence �	x	r
�u	r

� is bounded. Then, there exists r0<rj→+� and 	x∗�u∗
∈
Rn×Rm such that 	x	rj
�u	rj

→	x∗�u∗
.
Arbitrarily fix a x̄∈Rn such that −�<�	x̄
<+�. It is clear that

f̄ 	x	rj
�u	rj

+rj�	u	rj

−�ȳ�u	rj
�� f̄ 	x̄�0
=�	x̄
� (11)

Inequality (11), together with (5), gives

	rj− r̄ 
�	u	rj

��	x̄
−m̄� ∀j�
Thus,

�	u	rj

�
�	x̄
−m̄
rj− r̄

�

This inequality, together with the lsc property of � , gives

�	u∗
� lim inf
j→+�

�	u	rj

=0�

Therefore, u∗=0.
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It follows from (11) that

f̄ 	x	rj
�u	rj

−�ȳ�u	rj
���	x̄
� (12)

Taking lower limit in (12) as j→+� and use the lsc property of f̄ 	x�u
, we get

�	x∗
=f 	x∗�0
� lim inf
j→+�

f̄ 	x	rj
�u	rj

−�ȳ�u	rj
���	x̄
�

By the arbitrariness of x̄∈Rn, we conclude that x∗ ∈S. So (ii) is proved. �

THEOREM 3.2 (Zero duality gap). Consider the primal problem (1) and valley
at 0 augmented Lagrangian dual problem (3). Assume that � and its dualizing
parameterization function f̄ 	x�u
 satisfy the same conditions as in Theorem 3.1.
Then

(i) p	0
= lim
r→+�

��	ȳ�r
�

(ii) Zero duality gap holds:

p	0
= sup
	y�r
∈Rm×	0�+�


�̄	y�r
�

Proof. (i) We need only to show that, for each sequence �rj�→+���̄	ȳ�rj
→
p	0
. From (i) of Theorem 3.1, suppose that there exists 	x	rj
�u	rj

∈V 	ȳ�rj

such that

�̄	ȳ�rj
= f̄ 	x	rj
�u	rj

−�ȳ�u	rj
�+rj�	u	rj


= inf

	x�u
∈Rn×Rm
�f̄ 	x�u
+rj�	u
−�y�u��

Consequently,

�̄	ȳ�rj
� f̄ 	x	rj
�u	rj

−�ȳ�u	rj
�� (13)

From (ii) of Theorem 3.1, without loss of generality, we may assume that

	x	rj
�u	rj

→	x∗�0
∈S×�0��

This, combined with the lsc of f̄ 	·�·
 and (13), yields

liminf
j→+�

�̄	ȳ�rj
� liminf
j→+�

f̄ 	x	rj
�u	rj

− lim
j→+�

�ȳ�u	rj
�
� f̄ 	x∗�0
=�	x∗
=p	0
� (14)
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By Proposition 2.1 (ii),

limsup
j→+�

�̄	ȳ�rj
�p	0
� (15)

(14) together with (15) gives

lim
j→+�

�̄	ȳ�rj
=p	0
�

So (i) has been proved.
(ii) From (i), we deduce

sup
	y�r
∈Rm×	0�+�


�̄	y�r
�p	0
� (16)

This, together with Proposition 2.1 (ii), yields (ii). The proof is complete. �

Remark 3.1. If f and � satisfy 	5
, � has a valley at 0 in X, we can’t get that
� is level-bounded on X. For example, let 	x�u
∈Rn×Rm,

�	u
=
{�u��p� if �u�p�1�
1� if �u�p>1� 0<�<1�

f 	x�u
=�x��+�u�&� �>0� &>1�

It is easy to check f and � satisfy 	5
, � has a valley at 0 in Rm, but � isn’t
level-bounded on Rm.

It follows from Remark 2.1 and Remark 3.1 that Theorem 3.1 and Theorem 3.2
extend the corresponding results of [3, 8].

4. Exact Penalty Representation

In this section, we establish exact penalization representation results of the valley
at 0 augmented Lagrangian scheme.

DEFINITION 4.1. (Exact penalty representation). Consider the problem 	1
. Let
the valley at 0 augmented Lagrangian l̄ be defined as in Definition 2�4. A vector
ȳ∈Rm is said to support an exact penalty representation for the problem 	1
 if
there exists r̄ >0 such that

p	0
= inf
x∈Rn

l̄	x�ȳ�r
� ∀r� r̄ (17)

and

argmin
x
�	x
=argmin

x
l̄	x�ȳ�r
� ∀r� r̄ � (18)
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We have the following result.

LEMMA 4.1. Suppose one of following conditions is satisfied:

(i) ȳ supports an exact penalty representation for the problem 	1
.
(ii) p	0
 is finite and there exists r̄ ′>0 such that

m̄′ = inf�f̄ 	x�u
−�ȳ�u�+ r̄ ′�	u
� 	x�u
∈Rn×Rm�>−�� (19)

Then, we have

p	0
=sup
r�r∗

inf
x∈Rn

l̄	x�ȳ�r
 (20)

where r∗=max�r̄�r̄ ′�.

Proof. If the condition (i) is satisfied, it is easy to see (20) holds.
If the condition (ii) is satisfied, we prove (20) by contradiction. By the weak

duality (4), there exists #0>0 such that

p	0
>sup
r�r∗

inf
x∈Rn

l̄	x�ȳ�r
+#0�

Then there exist xk∈Rn and uk∈Rm such that

p	0
� f̄ 	xk�uk
−�ȳ�uk�+r�	uk
+#0� ∀r�r∗� (21)

Since � has a valley at 0, c�= inf�x����	x
>0, for each �>0. Denote r0=
p	0
−#0−m̄′

c�
+r∗. From (19) and (21), we have

�	uk
�
p	0
−#0−m̄′

r− r̄ ′ <c�� ∀r >r0� (22)

This implies uk∈�u∈Rm� �u����. Because f̄ 	x�u
 is level-bounded in x locally
uniform in u, it follows from (21) that �xk� is bounded. So �	xk�uk
� is bounded.
Assume, without loss of generality, that 	xk�uk
→	x̄�ū
. Let r0<r

k→+�,
(22) implies ū=0. The lsc of f and � combined with (21) yields p	0
�p	0
+#0.
This is a contradiction. So, (20) holds. �Corresponding to Theorem 11.61 in [8]
and Theorem 4.1 in [3], we have:

THEOREM 4.1. The following statements are true:

(i) If ȳ supports an exact penalty representation for the problem 	1
, then there
exist r̄ >0 and a neighborhood W of 0∈Rm such that

p	u
�p	0
+�ȳ�u�− r̄�	u
� ∀u∈W� (23)
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(ii) The converse of (i) is true if the condition (ii) of Lemma 4�1 is satisfied.

Proof. (i) Since ȳ supports an exact penalty representation, there exists r̄ >0
such that 	17
 holds with r= r̄ , i.e.,

p	0
= inf�l̄	x�ȳ�r̄
� x∈Rn�

= inf�f̄ 	x�u
−�ȳ�u�+ r̄�	u
� 	x�u
∈Rn×Rm��

Consequently,

p	0
� f̄ 	x�u
−�ȳ�u�+ r̄�	u
� ∀x∈Rn� u∈Rm�

implying

p	0
�p	u
−�ȳ�u�+ r̄�	u
� ∀u∈Rm�

This proves (i).
(ii) In assuming (23) there is no loss of generality in taking W to be a ball

B�=�u∈Rm��u������>0. First we prove that there exists r∗>r̄ , such that

p	u
�p	0
+�ȳ�u�−r∗�	u
>0� ∀u∈Rm\B�� (24)

It follows from (i) of Theorem 3.2 that

p	0
= lim
r→+�

�̄	ȳ�r
�

Therefore, for ∀#>0, there exists r1>0, such that
��̄	ȳ�r1
−p	0
�<#�

Hence

inf
	x�u
∈Rn×Rm

�f̄ 	x�u
+r1�	u
−�ȳ�u���p	0
−#�

Then

p	u
= inf
x∈Rn

�f̄ 	x�u
+r1�	u
−�ȳ�u��−r1�	u
+�ȳ�u�
�p	0
−#−r1�	u
+�ȳ�u�� (25)

Since u∈Rm\B� and � has a valley at 0 in Rm, c�= inf�u����	u
>0. Letting
r∗=max�r̄� #

c�
+r1+1�, we have

�	u
�c�>
#

r∗−r1
�
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That is

#−	r∗−r1
�	u
<0�

This and (25) imply

p	u
+r∗�	u
−�ȳ�u��p	0
�

Thus (24) holds. From (23), we know that the inequality in (24) holding for all
u∈Rm. Therefore

inf
x∈Rn

l̄	x�ȳ�r∗
�p	0
�

Then, using Lemma 4.1, we have

p	0
= inf
x∈Rn

l̄	x�ȳ�r
� ∀r�r∗� (26)

Since �	0
=0� (23) and (24) show that

argmin
u∈Rm

�p	u
+r�	u
−�ȳ�u��=�0�� (27)

Fix r >r∗, and let

g	x�u
 �= f̄ 	x�u
+r�	u
−�ȳ�u��
h	u
 �= inf

x∈Rn
g	x�u
�

k	x
 �= inf
u∈Rm

g	x�u
�

Obviously h	u
=p	u
+r�	u
−�ȳ�u� and k	x
= l̄	x�ȳ�r
. According to the
interchange rule in 1.35 in [8], one has

ū∈argmin
u
h	u


x̄∈argmin
x
g	x�ū


}
⇐⇒

{
x̄∈argmin

x
k	x


ū∈argmin
u
g	x̄�u
�

(28)

Now we prove that

argmin
x
�	x
=argmin

x
l̄	x�ȳ�r
� ∀r�r∗� (29)

For any x̄∈argminx�	x
, we have

x̄∈argmin
x
g	x�0
�
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It follow from 	27
 that

argmin
u
h	u
=�0��

So

ū=0∈argmin
u
h	u
�

Thus from (28),

x̄∈argmin
x
k	x
=argmin

x
l̄	x�ȳ�r
� ∀r�r∗�

We have

argmin
x
�	x
⊂argmin

x
l̄	x�ȳ�r
� ∀r�r∗� (30)

On the other hand, for any x̄∈argminx l̄	x�ȳ�r
=argminxk	x
�∀r�r∗,
we have

inf
u∈Rm

g	x̄�u
= l̄	x̄�ȳ�r
= inf
x∈Rn

l̄	x�ȳ�r
= inf
u∈Rm

h	u
=h	0
=g	x̄�0
�

Thus, ū=0∈argminug	x̄�u
. It follows from (28) that x̄∈argminxg	x�0
=
argminx�	x
. So

argmin
x
l̄	x�ȳ�r
⊂argmin

x
�	x
� ∀r�r∗� (31)

Therefore, from (30) and (31) that (29) holds. (26) and (29) imply that ȳ supports
an exact penalty representation for the problem (1). �

Remark 4.1. In Theorem 4�1, we don’t need to assume that there exist , >0
and N >0 such that �	u
�,�u� when �u��N . But this assumption is nec-
essary in the proof of -8.. In -8., � was assumed to be proper, lsc, convex
and argminy�	y
=�0�. As noted in -8., � is level-coercive. This implies the
existence of , >0 and N >0 satisfying �	u
�r�u� when �u��N . In -3., the
corresponding theorem (Theorem 5�1 in -3.) also need this assumption. Thus
Theorem 4�1 improves the corresponding results in -3�8..

For the special case where ȳ=0 supports an exact penalty representation for
the problem (1), we have the following result.

COROLLARY 4.1. In the framework of the generalized augmented Lagrangian
l̄ defined in Definition 2�3. The following statements are true:

(i) If ȳ=0 supports an exact penalty representation, then there exist r̄ >0 and
a neighborhood W of 0∈Rm such that

p	u
�p	0
− r̄�	u
� ∀u∈W�
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(ii) The converse of 	i
 is true if

(a) p	0
 is finite;
(b) there exist r̄ >0 and m∗ ∈R such that

m∗= inf�f̄ 	x�u
+ r̄�	u
� 	x�u
∈Rn×Rm��

Corollary 4.1 improves the corresponding result in [3].
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